Cell Signaling Technology

Product Pathways - Chromatin Regulation / Epigenetics

Acetyl-Histone H3 (Lys56) Antibody #4243

acetylation   H3.1   H3.2   histone h3  

No. Size Price
4243S 100 µl ( 10 western blots ) ¥4,050.00 现货查询 购买询价 防伪查询
4243T 20 µl ( 2 western blots ) ¥1,500.00 现货查询 购买询价 防伪查询
4243 carrier free & custom formulation / quantityemail request
Applications Dilution Species-Reactivity Sensitivity MW (kDa) Isotype
W 1:1000 Human,Mouse,Rat,Monkey, Endogenous 17 Rabbit

Species cross-reactivity is determined by western blot.

Applications Key: W=Western Blotting,

Specificity / Sensitivity

Acetyl-Histone H3 (Lys56) Antibody detects endogenous levels of histone H3 only when acetylated on Lys56. This antibody does not cross-react with histone H3 acetylated on lysines 9, 14, 18 or 27.

Acetyl-Histone H3 (Lys56) Antibody能够检测仅在Lys56位点乙酰化的内源性histone H3的蛋白水平。该抗体不能与在lysines 9、14、18或27位点乙酰化的histone H3发生交叉反应。

Source / Purification

Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to the amino terminus of histone H3 in which Lys56 is acetylated. Antibodies are purified by protein A and peptide affinity chromatography.

通过合成的仅在Lys56位点乙酰化的人源histone H3蛋白氨基端相应的多肽片段去免疫动物从而制备出此多克隆抗体。通过蛋白A和多肽亲和层析纯化获得。

Western Blotting

Western Blotting

Western blot analysis of extracts from HeLa, C6 and COS cells, untreated or treated with Trichostatin A (TSA) #9950 (400 nM for 18 h), using Acetyl-Histone H3 (Lys56) Antibody (upper) and Histone H3 Antibody #9715 (lower).

使用Acetyl-Histone H3 (Lys56) Antibody (上图)或Histone H3 Antibody #9715 (下图),免疫印迹(Western blot)分析HeLa、C6和COS细胞中Acetyl-Histone H3 (Lys56)和Histone H3蛋白水平,细胞分为untreated或Trichostatin A (TSA) #9950 (400 nM for 18 h) treated。



Acetyl-Histone H3 (Lys56) Antibody specificity was determined by peptide ELISA. The graph depicts the binding of the antibody to pre-coated acetyl-histone H3 (Lys56) peptide in the presence of increasing concentrations of various competitor peptides. As shown, only the acetyl-histone H3 (Lys56) peptide competed away binding of the antibody.

通过peptide ELISA确定Acetyl-Histone H3 (Lys56) Antibody的特异性。该图描述了抗体与提前包被的acetyl-histone H3 (Lys56) peptide的结合能力,并且多肽中含有浓度递增的不同竞争多肽。如同所示,仅acetyl-histone H3 (Lys56) peptide竞争脱离抗体的结合。



Confocal immunofluorescent analysis of HeLa cells, untreated (left) and TSA-treated (#9950; right), using Acetyl-Histone H3 (Lys56) Antibody (green). Actin filaments were labeled with DY-554 phalloidin (red).

使用Acetyl-Histone H3 (Lys56) Antibody (绿色),共聚焦免疫荧光分析HeLa细胞,细胞分为untreated (左图)和TSA-treated (#9950;右图)。DY-554 phalloidin标记微丝蛋白(红色)。


Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

Acetylation of histone H3 on Lys56 is critical for proper packaging of DNA into chromatin during DNA replication and DNA damage repair (12-14). Histone H3 is acetylated on Lys56 by CBP and p300 in response to DNA damage induced by treatment of cells with γ radiation, ultraviolet light, MMS, or hydroxyurea (14). Following DNA damage, chromatin assembly factor 1 protein (CAF-1) incorporates acetylated histones into chromatin at sites of DNA repair (14). The class III histone deacetylases (HDACs) SirT1, SirT2 and SirT6 have been shown to deacetylate histone H3 at Lys56 (14,15); however, treatment of cells with sodium butyrate or trichostatin A also leads to increased acetylation, implicating a class I or class II HDAC as an additional histone H3 Lys56 deacetylase (14). Histone H3 Lys56 acetylation is high in multiple types of cancer, and acetylation levels directly correlate with cellular dedifferentiation and tumorigenicity (14).

染色质结构的修饰在调节真核细胞的转录中扮演着重要的角色。由DNA围绕和八聚体组蛋白(H2A,H2B,H3和H4各两个)共同组成的核小体是染色质的主要组成(1)。核小体的组蛋白氨基酸尾端进行不同的转录后修饰,包括乙酰化,磷酸化,甲基化和泛素化(2-5)。这些修饰通过不同的刺激产生并且对转录因子能否接近染色质有着直接的影响,所以也影响着基因的表达(6)。在大多数的物种中组蛋白H2B主要在Lys5,,12,,15和20位点上发生乙酰化(4,7)。组蛋白H3主要是在Lys9,14,18,23,27和56位点上发生乙酰化。在某些物种里H3上的Lys9位点发生乙酰化并应该在组蛋白沉积和染色质组装中扮演着重要的角色(2,3)。组蛋白H3上Ser10,Ser28和Thr11位点的磷酸化在有丝分裂和无丝分裂中都与染色质的缩合紧密相连(8-10)。H3的Thr3位点的磷酸化在许多物种中都是高度保守的,是由kinase haspin所催化的。在哺乳动物中用磷酸化特异性的抗体做免疫组化显示H3的Thr3位点在有丝分裂的前期发生磷酸化,后期发生去磷酸化(11)。

在DNA复制和DNA损伤修复期间,histone H3在Lys56位点的乙酰化对于DNA的正确包装到染色质里起着重要作用 (12-14)。使用γ radiation、ultraviolet light、MMS或hydroxyurea处理细胞诱导DNA损伤反应下,Histone H3通过CBP和p300在Lys56位点乙酰化(14)。在DNA损伤之后,chromatin assembly factor 1 protein (CAF-1)在DNA修复的位点合并乙酰化的组蛋白进入染色质(14)。研究证明III类组蛋白去乙酰酶(HDACs) SirT1、SirT2和SirT6使histone H3在Lys56位点去乙酰化(14,15);然而,sodium butyrate或trichostatin A处理的细胞也导致乙酰化作用增加,暗示I或II类HDAC作为一个附加的Lys56位点histone H3去乙酰酶(14)。 在多种癌症中Histone H3的Lys56位点乙酰化水平很好,并且乙酰化水平直接与细胞内去分化和致肿瘤性有关(14)。

  1. Workman, J.L. and Kingston, R.E. (1998) Annu Rev Biochem 67, 545-79.
  2. Hansen, J.C. et al. (1998) Biochemistry 37, 17637-41.
  3. Strahl, B.D. and Allis, C.D. (2000) Nature 403, 41-5.
  4. Cheung, P. et al. (2000) Cell 103, 263-71.
  5. Bernstein, B.E. and Schreiber, S.L. (2002) Chem Biol 9, 1167-73.
  6. Jaskelioff, M. and Peterson, C.L. (2003) Nat Cell Biol 5, 395-9.
  7. Thorne, A.W. et al. (1990) Eur J Biochem 193, 701-13.
  8. Hendzel, M.J. et al. (1997) Chromosoma 106, 348-60.
  9. Goto, H. et al. (1999) J Biol Chem 274, 25543-9.
  10. Preuss, U. et al. (2003) Nucleic Acids Res 31, 878-85.
  11. Dai, J. et al. (2005) Genes Dev 19, 472-88.
  12. Chen, C.C. et al. (2008) Cell 134, 231-43.
  13. Li, Q. et al. (2008) Cell 134, 244-55.
  14. Das, C. et al. (2009) Nature 459, 113-7.
  15. Yang, B. et al. (2009) Cell Cycle 8, 2662-3.

Application References

Have you published research involving the use of our products? If so we'd love to hear about it. Please let us know!


Companion Products

For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.

Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.

用户评论 --- 共 0


我要参与评论 :