Cell Signaling Technology

Product Pathways - TGF-beta/Smad Signaling

Smad1 (D59D7) XP® Rabbit mAb (Biotinylated) #12430

No. Size Price
12430S 100 µl ( 10 western blots ) ¥4,264.00 现货查询 购买询价
12430 carrier free & custom formulation / quantityemail request
Applications Dilution Species-Reactivity Sensitivity MW (kDa) Isotype
W 1:1000 Human,Mouse,Monkey, Endogenous 60 Rabbit IgG

Species cross-reactivity is determined by western blot.

Applications Key: W=Western Blotting,

Homology

Species predicted to react based on 100% sequence homology: Xenopus, Bovine,

Specificity / Sensitivity

Smad1 (D59D7) XP® Rabbit mAb (Biotinylation) recognizes endogenous levels of total Smad1 protein.

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Ser190 of human Smad1 protein.

Description

This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Smad1 (D59D7) XP® Rabbit mAb #6944.

Western Blotting

Western Blotting

Western blot analysis of extracts from HT-1080 and C2C12 cells using Smad1 (D59D7) XP® Rabbit mAb (Biotinylated).

Background

Bone morphogenetic proteins (BMPs) constitute a large family of signaling molecules that regulate a wide range of critical processes including morphogenesis, cell-fate determination, proliferation, differentiation, and apoptosis (1,2). BMP receptors are members of the TGF-β family of Ser/Thr kinase receptors. Ligand binding induces multimerization, autophosphorylation, and activation of these receptors (3-5). They subsequently phosphorylate Smad1 at Ser463 and Ser465 in the carboxy-terminal motif SSXS, as well as Smad5 and Smad9 (Smad8) at their corresponding sites. These phosphorylated Smads dimerize with the coactivating Smad4 and translocate to the nucleus, where they stimulate transcription of target genes (5).

MAP kinases and CDKs 8 and 9 phosphorylate residues in the linker region of Smad1, including Ser206. The phosphorylation of Ser206 recruits Smurf1 to the linker region and leads to the degradation of Smad1 (6). Phosphorylation of this site also promotes Smad1 transcriptional action by recruiting YAP to the linker region (7).

  1. Hogan, B.L. (1996) Genes Dev 10, 1580-94.
  2. Hoodless, P.A. et al. (1996) Cell 85, 489-500.
  3. Klemm, J.D. et al. (1998) Annu Rev Immunol 16, 569-92.
  4. Kretzschmar, M. et al. (1997) Genes Dev 11, 984-95.
  5. Whitman, M. (1998) Genes Dev 12, 2445-62.
  6. Sapkota, G. et al. (2007) Mol Cell 25, 441-54.
  7. Alarcón, C. et al. (2009) Cell 139, 757-69.

Application References

Have you published research involving the use of our products? If so we'd love to hear about it. Please let us know!

Protocols


For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.

XP is a registered trademark of Cell Signaling Technology, Inc.

Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.

用户评论 --- 共 0

该产品暂无评论!

我要参与评论 :

如要参与评论请先登录网站

还没有网站账户?去注册一下吧

Products

 

Applications